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A B S T R A C T

The inherent uncertainty associated with demand and vendor lead time significantly complicates replenishment
strategies, which is challenge in the dynamic realm of e-commerce platforms. An end-to-end multi-period
inventory replenishment strategy based on temporal fusion transformer (TFT-MPIR) is tailored for an integrated
inventory replenishment decision-making process, and takes into account stochastic demand, vendor lead time,
as well as linear transportation costs. TFT-MPIR which is fundamentally trained on an extensive amount
of historical data, utilizes deep learning to directly calculate replenishment orders based on contextual and
historical insights, deviating from the conventional two-step Predict-Then-Optimize (PTO) approach. The TFT-
MPIR neural network framework designed with the concept of modularity enables an in-depth understanding
and optimization of its structure and parameters. Specifically, the demand forecasting module utilizes temporal
fusion transformer for advanced multi-quantile forecasting, generating comprehensive demand projections that
significantly improve the accuracy of subsequent replenishment decisions. Numerical experiments incorporate
authentic historical data from a prominent beverage supplier. Compared to the optimal solution (OPT) for
inventory costs, TFT-MPIR exhibits a variance of 15.8%, markedly surpassing other integrated inventory
strategies namely (t, R, S), PTO, and E2E-Multi-layer perceptron(E2E-MLP), which demonstrate divergences of
34.8%, 24.1%, and 22.3% respectively from OPT. Furthermore, TFT-MPIR framework achieves a cost reduction
of 8.3% relative to the conventional PTO, and 19% in comparison to the (t, R, S). The robustness and scalability
of the TFT-MPIR are substantiated through the adjustment of the ratio between unit stockout cost and unit
transportation cost, coupled with sensitivity analysis.
1. Introduction

In the swiftly evolving landscape of e-commerce retail, the industry
is witnessing a surge in customer diversity, an expanding range of
products, and significant fluctuations in order volumes. Such evolu-
tion has resulted in the accumulation of extensive data, including
characteristics of items (Stock Keeping Units or SKUs), historical sales
figures, and historical vendor lead time (VLT) data. The challenge of
integrating data-driven methodologies with large-scale data to boost
inventory replenishment efficiency is an intriguing area of study (Sny-
der & Shen, 2019). Demand and VLT stand as pivotal factors in shaping
inventory replenishment strategies. Traditional research often relied on
probabilistic distribution assumptions for demand and VLT to devise
replenishment policies (Levi, Janakiraman & Nagarajan, 2008; Levi,
Pál, Roundy, & Shmoys, 2007; Levi, Roundy, Shmoys and Truong,
2008; Levi & Shi, 2013). However, in the real-world e-commerce
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setting, the pronounced unpredictability and variability of both de-
mand and VLT render such assumptions impractical. Factors such as
demand uncertainty, seasonal fluctuations, and promotional activities
complicate inventory management, leading to the risk of high in-
ventory costs for retailers. Therefore, precise inventory management
is crucial for maintaining efficient operations and improving market
competitiveness.

As the volume of datasets increases, it is likely to improve the
effectiveness of order decision-making in practical applications (Ma-
heshwari, Gautam, & Jaggi, 2021). The datasets contain numerous
demand-related features, which aid in making better decisions based
on real information (Babai, Boylan, & Rostami-Tabar, 2022; Kamble
& Gunasekaran, 2020; Kuo & Kusiak, 2019). Machine learning (ML)
techniques, leveraging historical and contextual data, offer highly ac-
curate predictive capabilities (Mandi, Stuckey, Guns, et al., 2020).
For example, Cohen et al. employed ML models to forecast future
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Fig. 1. PTO & E2E.
product demands, subsequently using predictions to determine optimal
promotional pricing through non-linear integer programming (Cohen,
Leung, Panchamgam, Perakis, & Smith, 2017). The methodology ex-
emplifies the Predict-Then-Optimize (PTO) strategy (Elmachtoub &
Grigas, 2022), a two-pronged approach that initially forecasts uncer-
tain input parameters using ML models trained on historical data,
followed by the resolution of the related optimization problem using
forecasts above. While PTO strategy is prevalent, it fundamentally
focuses on minimizing predictive errors without considering the ram-
ifications of these predictions on subsequent optimization stages (El-
machtoub, Liang, & McNellis, 2020). Besides, even with demand and
VLT predictions, addressing inventory issues remains challenging (Hal-
man, Orlin, & Simchi-Levi, 2012). In the context of retail industry
professionals, the principal emphasis lies on the efficacy of decision-
making processes, as opposed to the mere minimization of predictive
inaccuracies (Mukhopadhyay, Vorobeychik, Dubey, & Biswas, 2017;
Wang et al., 2006). In addition, there is a trend towards simultane-
ously performing prediction and optimization. For the feature-based
newsvendor problem, Ban and Rudin derived generalization bounds for
the out-of-sample performance of the cost and the finite-sample bias
from the true optimal decision (Ban & Rudin, 2019). Oroojlooyjadid
et al. proposed a Multilayer Perceptron (MLP) model to optimize order
quantities (Oroojlooyjadid, Snyder, & Takáč, 2020). However, their
primary work focuses on the classical newsvendor problem, without
considering multi-period settings and VLT.

Fig. 1(a) presents the decision-making mechanism within PTO
framework. Paradoxically, demand and VLT forecasts that diverge
further from actual values may lead to more suitable decisions, ul-
timately reducing inventory costs. This depiction underscores that a
predictive model remains valuable even when significant errors are
evident, provided that the forecasted cost vectors effectively lead to
accurate decision-making.

There is often a discrepancy between the criteria for training algo-
rithms and the final evaluation standards in many ML applications. To
bridge this gap, Donti et al. introduced an End to End (E2E) methodol-
ogy, and aimed at minimizing expected losses (Donti, Amos, & Kolter,
2017). Their approach has shown its strengths in addressing classic
inventory challenges, managing real-world electrical grids, and opti-
mizing energy storage arbitrage tasks. Additionally, Tian et al. proposed
an E2E approach to address the data-driven newsvendor problem,
which effectively reduces the costs associated with order decision-
making (Tian & Zhang, 2023). In contrast to PTO framework, the
E2E solution directly linking data input to replenishment decisions—
proves to be more effective in inventory management, particularly
when backed by a substantial amount of raw data. The E2E holistic ap-
proach to inventory decision-making as depicted in Fig. 1(b), embraces
the entire process from input to output. The E2E method transcends
traditional, segmented approaches by avoiding the need for manual
feature engineering or intermediary steps, instead directly mapping
inputs to outputs for a more streamlined and automated problem-
solving process. This not only lightens the load of manual feature
2 
engineering but also minimizes reliance on intermediate outcomes,
potentially revealing insights that conventional methods might miss.
Consequently, E2E learning views the problem in its entirety, rendering
the system more cohesive and efficient.

The E2E methodology presents an effective resolution for single-
period inventory management challenges with uncertain demand, akin
to the well-known newsvendor problem (Arrow, Harris, & Marschak,
1951), while the data-driven newsvendor problem has emerged as a re-
search hotspot in the field of management science in recent years (Hu-
ber, Müller, Fleischmann, & Stuckenschmidt, 2019; Lin, Chen, Li, &
Shen, 2022; Neghab, Khayyati, & Karaesmen, 2022). However, inven-
tory management in e-commerce retail transcends this, encompassing
complex, multi-period replenishment issues. The intricacy of multi-
period replenishment stems from the dependency of each period’s
ordering quantity on both the current demand and VLT, as well as
influenced by preceding and subsequent inventory levels. Crafting an
ordering strategy, therefore, necessitates adapting to each period’s
evolving information, feedback, and potential future impacts. The ex-
amination of such problem began with the works of Ehrhardt (1984)
and Kaplan (1970), which highlighted the benefits of (s, S) policies
and myopic base stock policies, and base stock’s optimality has been
demonstrated under various settings (Gallego & Özer, 2001; Iida &
Zipkin, 2006; Muharremoglu & Tsitsiklis, 2008). However, transporta-
tion costs should be considered. Moreover, with transportation costs
being a significant factor, the larger the order quantity, the higher
the transportation expense. Hence, minimizing the total inventory cost
involves a delicate balance: preventing exorbitant stockout costs due to
inadequate ordering while controlling the excess transportation costs
associated with overordering.

Recognizing the pivotal role of demand and VLT in replenishment
decision-making, we develop a deep learning framework which adopts
a modular structure, comprising modules for demand prediction, VLT
forecasting, and replenishment quantity estimation. The demand mod-
ule harnesses historical demand data to project future demands, and
the VLT prediction module forecasts future VLT. During the modules’
forecasting processes, contextual elements like holidays, weekends,
and SKU specifics are considered. To capitalize on such characteristics
and discern the periodic patterns within historical demand data for
multi-quantile forecasting, we integrate the Temporal Fusion Trans-
former (TFT) model (Lim, Arık, Loeff, & Pfister, 2021). The inter-
pretable time series forecasting algorithm, pioneered by Google Cloud
AI, adeptly processes varying input features and incorporates inter-
pretability aspects. It adeptly handles complex time series structures,
necessitating the extraction of diverse data features, including static
covariates, known future inputs, and other historically observed ex-
ogenous time series. The TFT model skillfully utilizes these extensive
features to amalgamate various inputs, thereby boosting the forecasting
efficacy across multiple tasks. Following the design of two modules,
corresponding predictive outputs, along with other elements like re-
plenishment status, inventory levels, and historical arrival quantities,
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Table 1
Contribution of this article compared to previous studies.

Method Articles Period Demand VLT Trans cost Neural network

Base stock and (s,S) Ehrhardt (1984) and
Kaplan (1970)

Multi Assume certain
knowledge

Assume certain
knowledge

No –

Approximation
algorithms

Levi, Janakiraman
et al. (2008), Levi
et al. (2007) and
Levi, Roundy et al.
(2008)

Multi Assume certain
knowledge

No No –

Approximation
algorithms

Levi and Shi (2013) Multi Assume certain
knowledge

Assume as a known
constant

No –

Joint estimation
optimization

Ban and Rudin
(2019)

Single Uncertain No No –

Joint estimation
optimization

Oroojlooyjadid et al.
(2020)

Single Uncertain No No MLP

E2E Donti et al. (2017) Single Randomly generated No No Fully connected network

E2E Tian and Zhang
(2023)

Single Uncertain No No Modular designed and
integrated textual review
features

E2E Qi et al. (2023) Multi Uncertain Uncertain No Modular designed and
based on MQRNN (Wen,
Torkkola, Narayanaswamy,
& Madeka, 2017)

E2E This paper Multi Uncertain Uncertain Linear Modular designed and
based on TFT
i
s
t
a
i
u
d
a

w
a
a
o
t
T
i
o
a
t
i
p
p
v
t
s
s
o

are inputted into the replenishment quantity prediction module to
determine the final replenishment decision. The proposed method inte-
grates tasks that were previously separated in PTO (such as demand and
VLT prediction and replenishment decision-making) into a single deep
learning framework. Here, predictions of demand and VLT serve as
auxiliary tasks, facilitating rapid model training, enabling performance
monitoring, and enhancing generalizability to mitigate overfitting. In
contrast to neural networks with direct full-feature interconnectivity,
the modular approach delivers superior interpretability and efficiency,
ensuring robust performance (Qi et al., 2023).

From the contributions outlined in Table 1, the differences between
the study and previous approaches can be clearly seen. The proposed
method focuses on using an E2E deep learning approach to address
the multi-period replenishment problem, which involves uncertainties
in both demand and VLT, while also considering linear transportation
costs. To better handle historical demand and VLT as time-series data,
we have designed a modular neural network model based on the TFT
time-series forecasting model. The contributions are encapsulated as
follows. Firstly, we innovatively applied an E2E deep learning frame-
work to address the challenges of multi-period inventory replenishment
under the uncertainty of demand and VLT, including linear transporta-
tion costs. Our framework adeptly outputs replenishment decisions
for order replenishment days, guided by the input features. Secondly,
utilizing both simulated and real-world data from a beverage supplier,
our experiments revealed that our end-to-end learning framework sur-
passes several benchmark models, particularly in achieving reduced
inventory costs. lastly, proposed approach integrates a modular neural
network design, incorporating TFT and LSTM models for predicting un-
known demand and VLT, subsequently integrated with a replenishment
quantity decision module.

The remainder of the paper is organized as follows: Section 2
delves into the multi-period inventory replenishment issue with linear
transportation costs, outlining a post-hoc marking process using the
gurobi solver to derive the target vector. Section 3 introduces the TFT
model and explicates our deep learning neural network architecture.
In Section 4, we engage in offline numerical experiments using both
simulated and real-world data to validate the efficacy of our proposed
model in reducing total inventory costs compared to other methods. Fi-
nally, Section 5 concludes with a summary and suggestions for potential
future research directions.
 t

3 
2. Considering linear transportation costs and post-hoc optimal
solutions in multi-period inventory replenishment challenges

2.1. Overview of the inventory replenishment problem

In the study, we tackle a multi-period inventory replenishment
challenge characterized by unpredictable demand and VLT, coupled
with transportation costs that vary linearly with order volume. Here’s
the scenario: for an individual item stored in a single distribution cen-
ter (DC), we consider a planning horizon denoted as 𝑇 . The uncertain
demand on day 𝑡 is represented by 𝑑𝑡. If a day concludes with surplus
nventory, the inventory level is positive, which noted as the end-of-day
tock quantity. Conversely, if a shortage occurs at day’s end, leading
o stockouts, which noted as stockout costs are immediately incurred,
nd the inventory is reset to zero. Hence, at the end of each cycle, we
ncur either a holding cost ℎ per excess unit or a stockout cost 𝑏 per
nit short. Moreover, if a replenishment order is placed on any given
ay, associated transportation costs based on the order volume are also
pplicable.

The proposed model incorporates a periodic replenishment policy,
here the replenishment cycle is predetermined by specific dates,
llowing for orders to be placed at set intervals (such as on Mondays
nd Fridays). Concurrently, the model considers the stochastic nature
f VLT, labeled as 𝑙𝑡, denoting that an order made on day 𝑡 is expected
o be delivered on day 𝑡 + 𝑙𝑡, with 𝑙𝑡 being a random positive integer.
he delivery time 𝑙𝑡 for a given day 𝑡 remains uncertain until the order

s received on day 𝑡 + 𝑙𝑡. Inspired by the graphical representations
f inventory level changes, Bhavani, Mahapatra and Kumar (2023)
nd Bhavani, Mishra and Mahapatra (2023) considered a sustainable
wo-echelon green supply chain model and a two green-warehouse
nventory systems with green investments, we drew Fig. 2 which de-
icts the inventory replenishment scenario, derived from the real data
rovided in this paper. The blue line illustrates the fluctuations in in-
entory levels, which change in response to daily sales and arrivals. The
imeline begins at 𝑡0, with certain dates marked as replenishment days,
uggesting possible order placements. The horizontal purple dashed line
hows the quantity of orders in transit. For instance, an order placed
n 𝑡0 will arrive four days later on 𝑡4, since 𝑙𝑡0 = 4, hence 𝑡0 + 𝑙𝑡0 = 𝑡4,

hereby replenishing the inventory.
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Fig. 2. Periodic replenishment.
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Table 2
Parameter symbols and explanatory notes.

Parameter Description

𝑇 , 𝑇̃ , 𝑇𝐻 Planning horizon, length of input contextual data, historical data
𝑑𝑡 Demand on day 𝑡
𝑙𝑡 VLT on day 𝑡
𝑎𝑡 Whether replenishment occurs on day 𝑡
𝑞𝑡 , 𝑞∗𝑡 Replenishment quantity on day 𝑡, OPT on day 𝑡
𝑝 Number of boxes per pallet
𝐾𝑓 Transportation cost per box from the current DC to factory 𝑓
ℎ, 𝑏 Holding cost per box, stockout cost per box
𝑚𝑡 , 𝑛𝑡 Inventory level on day 𝑡, stockout quantity on day 𝑡
𝜆𝑖 Loss weight for each output 𝑖

Inventory costs are calculated in the following manner: The overall
nventory cost is comprised of transportation, holding, and stockout
osts. At the beginning of each cycle, it is imperative to verify whether
ny replenishment orders are arriving on that day, acknowledging
hat several orders might arrive simultaneously. Subsequently, demand
evels are considered, and the inventory level at the end of the period
s updated. Depending on final inventory level and any shortages,
ither holding costs or stockout costs are incurred. Moreover, on days
esignated for replenishment, when orders are placed, corresponding
ransportation costs are also incurred. Our goal is to minimize the
otal inventory cost within the specified planning period by accurately
etermining the necessary replenishment quantities.

.2. Symbol explanation and model representation

Below are the parameters pertinent to the problem and model, as
utlined in Table 2.

The problem of the multi-period inventory replenishment is encap-
ulated in a mathematical framework, using the function(⋅)+ = 𝑚𝑎𝑥(⋅, 0)

to denote the maximum value in comparison with 0. In the context
of problem (P1), 𝑞𝑡 symbolizes the replenishment quantity on day 𝑡,
quantified in pallets. The term 𝑝 refers to the conversion ratio between
pallets and boxes pertinent to the current SKU. Although boxes are
typically employed for storage and sales in DCs, pallets are more effi-
cient for picking and transportation processes. This setting necessitates
conversion between different measurement units for diverse products.
It is crucial to note that factories require DC replenishment in minimum
4 
units of pallets, with each SKU having a distinct number of boxes
per pallet. Consequently, DCs must undertake replenishment in whole
pallets. The binary variable 𝑎𝑡 indicates whether an order is placed on
day 𝑡. 𝐾𝑓 denotes the per-box transportation cost for replenishment
from two factories. It is worth noting that the scenario considers
linear transportation costs, where costs are directly proportional to the
transport quantity, implying that each unit of cargo transported incurs
a specific cost. Thus, when placing orders for stock replenishment, it is
essential to consider the increase in transportation costs corresponding
to the order volume. Larger order sizes, while potentially reducing
stockout rates and costs, can also lead to escalated holding and trans-
portation expenses. The variables 𝑚𝑡 and 𝑛𝑡 represent the inventory
level and the quantity of stockouts on day 𝑡, respectively. The initial
inventory level is assumed to be 𝑚−1. 𝑀 is a number large enough to
e significant. The goal of problem (P1) is to minimize the aggregate
osts of transportation, holding, and stockouts.

Constraint (1) pertains to inventory equilibrium, allowing for the
ossibility of multiple orders arriving concurrently on the same day.
onstraint (2) establishes the definition of daily stockout quantity.
ccording to constraint (3), if day t is not a designated ordering day,

hen the order quantity on day 𝑡 should be zero. Constraint (5) applies
binary condition to 𝑎𝑡, constraint (6) stipulates that inventory levels
ust be non-negative integers, and constraint (7) serves as a binary

ndicator for selecting between the two factories for procurement.

min
𝑡 ,𝑦𝑡 ,𝑧𝑡

𝑇
∑

𝑡=0

(

𝑎𝑡𝑞𝑡𝑝𝐾𝑓 + ℎ𝑚𝑡 + 𝑏𝑛𝑡
)

(P1)

s.t. 𝑚𝑡 =
⎛

⎜

⎜

⎝

𝑚𝑡−1 +
∑

𝑖∈
{

𝑗∶𝑗+𝑙𝑗=𝑡
}

𝑞𝑖𝑝 − 𝑑𝑡
⎞

⎟

⎟

⎠

+

∀t = 0,… , 𝑇 (1)

𝑛𝑡 =
⎛

⎜

⎜

⎝

−𝑚𝑡−1 −
∑

𝑖∈
{

𝑗∶𝑗+𝑙𝑗=𝑡
}

𝑞𝑖𝑝 + 𝑑𝑡
⎞

⎟

⎟

⎠

+

∀t = 0,… , 𝑇 (2)

𝑞𝑡 ≤ 𝑀𝑎𝑡 ∀t = 0,… , 𝑇 (3)

𝑚𝑡, 𝑛𝑡, 𝑞𝑡 ≥ 0 ∀t = 0,… , 𝑇 (4)

𝑎𝑡 ∈ {0, 1} ∀t = 0,… , 𝑇 (5)

𝑚𝑡, 𝑛𝑡, 𝑞𝑡 ∈ Z+ ∀t = 0,… , 𝑇 (6)
𝑓 ∈ {0, 1} (7)
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2.3. Approach to post-hoc optimal solutions and labeling process

In deep neural network training, mastering the transformation from
input characteristics to output labels is vital. For our replenishment
issue at hand, the objective revolves around ascertaining the ideal
replenishment amount for each specified replenishment day after scru-
tinizing all encompassing context data 𝑋, which encompasses historical
emand, historical VLT, and chronological data (like days, months,
eekends, holidays, etc.). Nevertheless, given that the primary dataset
nly encompasses observational data of demand and lead times for
eplenishment without including the optimal replenishment quantities
the principal target vector), it is unsuitable for direct use as a training
ataset. For each historical replenishment juncture, using the observed
ontextual data 𝑋, one needs to compute 𝑞∗, signifying the optimal
aily replenishment order quantity, to act as the target vector in
upervised learning. The aforementioned phase is termed as ‘‘labeling’’
ithin supervised learning techniques (James, Witten, Hastie, Tibshi-

ani, et al., 2013). Once labeled data is accessible, the neural network
raining association can be exemplified as follows.

min
∶𝑋→𝑅

𝑁
∑

𝑖=1
𝐿(𝑓 (𝑥𝑖); 𝑞∗𝑖 ) (1)

represents the aggregate count of training data, while 𝐿 is the loss
unction outlined by the discrepancy between the model’s forecast 𝑓 (𝑥𝑖)
nd the optimal order volume 𝑞∗𝑖 . Notably, we contemplate the neural
etwork model for the function 𝑓 , with the intricacies of the neural
etwork architecture to be delineated in Section 3.2.

Here, we detail a methodology for calculating the optimal order
abels based on historical data. Qi et al. originally developed a label-
ng process for multi-period inventory replenishment issues without
ccounting for transportation costs (Qi et al., 2023). However, incor-
orating linear transportation costs requires an alternate approach to
ompute the labels. Moreover, as both demand and VLT are accessible
rom historical data, problem (P1) can be redefined as a deterministic
ulk problem, incorporating stockout costs, termed as problem (P2).

min
𝑡 ,𝑦𝑡 ,𝑧𝑡

−1
∑

𝑡=−𝑇𝐻

(

𝑎𝑡𝑞𝑡𝑝𝐾𝑓 + ℎ𝑚𝑡 + 𝑏𝑛𝑡
)

(P2)

s.t. 𝑚𝑡 =
⎛

⎜

⎜

⎝

𝑚𝑡−1 +
∑

𝑖∈
{

𝑗∶𝑗+𝑙𝑗=𝑡
}

𝑞𝑖𝑝 − 𝑑𝑡
⎞

⎟

⎟

⎠

+

∀t = −𝑇𝐻 ,… ,−1 (1)

𝑛𝑡 =
⎛

⎜

⎜

⎝

−𝑚𝑡−1 −
∑

𝑖∈
{

𝑗∶𝑗+𝑙𝑗=𝑡
}

𝑞𝑖𝑝 + 𝑑𝑡
⎞

⎟

⎟

⎠

+

∀t = −𝑇𝐻 ,… ,−1 (2)

𝑞𝑡 ≤ 𝑀𝑎𝑡 ∀t = −𝑇𝐻 ,… ,−1 (3)

𝑚𝑡, 𝑛𝑡, 𝑞𝑡 ≥ 0 ∀t = −𝑇𝐻 ,… ,−1 (4)

𝑎𝑡 ∈ {0, 1} ∀t = −𝑇𝐻 ,… ,−1 (5)

𝑚𝑡, 𝑛𝑡, 𝑞𝑡 ∈ Z+ ∀t = −𝑇𝐻 ,… ,−1 (6)

𝑓 ∈ {0, 1} (7)

n the context of problem (P2), the historical data on demand and
LT extends from −𝑇𝐻 day to −1 day, 𝑇𝐻 is usually the larger value.
etailers amass a wealth of historical information, including past sales
nd VLT, for training data. Consequently, in this scenario, 𝑑𝑡 and
𝑡 are replaced with their actual historical counterparts. Addressing
uch a deterministic bulk problem, including stockout costs, can be
ddressed through dynamic programming or efficiently solved using
ommercial solvers. Solving this problem enables us to ascertain the
ptimal replenishment quantity, 𝑞∗𝑡 , for each designated ordering day,
pecifically on days 𝑡 where 𝑎𝑡 = 1, culminating in the generation of

abeled data. l

5 
. An end-to-end multi-period inventory replenishment strategy
ased on temporal fusion transformer

This section presents the development of the E2E deep learning
odel namely Multi-Period Inventory Replenishment by Temporal Fu-

ion Transformer (TFT-MPIR), which tailored for addressing multi-
eriod inventory replenishment challenges with linear transportation
osts.

.1. Framework for resolution

The proposed framework for resolving multi-period replenishment
ssues is depicted in Fig. 3, comprising two distinct segments. The first
egment involves the labeling. We commence by defining the multi-
eriod inventory replenishment issue inclusive of transportation costs,
reprocess the initial data, and utilize the gurobi solver to ascertain the
ptimal quantities for replenishment. Optimal quantities are then em-
loyed as the target vectors (labels) for supervised learning, resulting in
n updated labeled dataset. The second segment focuses on the model
raining and prediction. We begin by segmenting the dataset, then
roceed to train the training set within the TFT-MPIR neural network
odel. The model is further assessed on a validation set, with the aim

f determining the most cost-effective model during the training phase
s the ultimate predictive model. Finally, the trained model is utilized
o generate the predicted quantities for replenishment.

.2. TFT-MPIR neural network

With the post-hoc optimal problem resolved and the training data
uitably labeled in Section 2, we have now developed training data
ncorporating the target vector. Our aim is to train the neural network
o accurately map the relationship between contextual information and
ptimal decision-making. The detailed TFT-MPIR neural network is
hown in Fig. 4. The inputs to the TFT-MPIR model are segmented into
ix distinct parts ({𝐷𝑖}−1+𝑡𝑖=−𝑇̃+𝑡

, {𝑋𝑖}−1+𝑡𝑖=−𝑇̃+𝑡
, {𝐿𝑖}−1+𝑡𝑖=−𝑇̃+𝑡

, {𝐺𝑖}−1+𝑡𝑖=−𝑇̃+𝑡
,

𝐼𝑖}−1+𝑡𝑖=−𝑇̃+𝑡
, {𝐴𝑖}𝑡+ℎ𝑖=𝑡 ), each representing a different context sequence.

𝑡 denotes features related to the historical demand noted prior to
ay 𝑡, while 𝑋𝑡 encompasses standard features acquired before day 𝑡,
ncluding aspects like product category, warehouse location, and time-
ensitive factors such as weekends or holidays. 𝐿𝑡 relates to features
ssociated with VLT observed before day 𝑡. 𝐺𝑡 and 𝐼𝑡 correspond to the
ptimal quantities for order arrivals and inventory levels respectively,
alculated prior to day 𝑡. 𝐴𝑡 is a determined Boolean value indicating
hether replenishment is planned from day 𝑡 to 𝑡 + ℎ. 𝑇̃ signifies the
uration of the input contextual data. The TFT-MPIR model produces
hree distinct outputs (Out1, Out2, Out3), where Out1 is the forecasted
emand, Out2 is the forecasted VLT and the principal output, Out3
ymbolizes the ultimate replenishment decision, namely the replen-
shment quantity. Hence, the training goal is to fine-tune the func-
ion 𝑓 ({𝐷𝑖}−1+𝑡𝑖=−𝑇̃+𝑡

, {𝑋𝑖}−1+𝑡𝑖=−𝑇̃+𝑡
, {𝐿𝑖}−1+𝑡𝑖=−𝑇̃+𝑡

, {𝐺𝑖}−1+𝑡𝑖=−𝑇̃+𝑡
, {𝐼𝑖}−1+𝑡𝑖=−𝑇̃+𝑡

, {𝐴𝑖}𝑡+ℎ𝑖=𝑡 )

o closely replicate Out3. Considering that the input for demand is a
ime series format and future demand significantly influences replen-
shment decisions, the demand forecasting module is crafted used TFT
odel which has garnered remarkable results in time series forecasting,
articularly in sectors like transportation and energy (Nazir, Shaikh,
hah, & Khalil, 2023; Wu, Wang, & Zeng, 2022, 2023; Zhang, Zou,
ang, & Yang, 2022).

TFT model is a multi-horizon time series forecasting deep learning
odel that possesses natural interpretability, offering stronger explana-

ory power compared to standard black-box models. Fig. 5 outlines
he architecture of the TFT model. The TFT adeptly distinguishes and
everages various input types, encompassing static variables, known
ynamic variables, and unknown dynamic variables. Within the model,
ts time-dependency processing component is capable of deriving both

ong and short-term temporal associations from observed or known
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Fig. 3. E2E prediction framework.
Fig. 4. TFT-MPIR neural network framework.
time-variable inputs. It effectively creates feature representations for
each input type, thereby enhancing the predictive performance across
various forecasting tasks. TFT model has five fundamental components:
the gating mechanism, the variable selection network, the static covari-
ate encoder, the temporal dependency processing module, and multi-
level prediction interval prediction. (a) Gating Mechanism: Its purpose
is to disregard unnecessary components within the architecture, adapt-
ing to various datasets and scenarios. (b) Variable Selection Network:
Select the most significant input variables at each time step while
ignoring less relevant variables simultaneously. (c) Static Covariate En-
coder: It integrates static features into the network, which enhances the
accuracy of predictions. (d) Temporal Dependency Processing Module:
Capture long-term or short-term temporal dependencies from observed
or known time-varying inputs. The Seq2Seq layer captures short-term
dependencies, while long-term dependencies rely on the multi-head
6 
attention mechanism. (e) Multi-level Prediction Interval Prediction:
Use quantile forecasting to determine the possible range of target
values within each prediction interval. It generates multi-quantile daily
demand forecasts as output, leading to more accurate replenishment
decision-making. Complete details of the TFT can be found in the
referenced literature (Lim et al., 2021).

In current demand forecasting task for the DC_SKU combination
under consideration, there is a static covariate 𝑆(e.g. DC info or SKU
info). 𝑦𝑡 represents the target variable on day 𝑡 (e.g. the sales value
on the target day). 𝑥𝑡 represents other time-dependent inputs, which
include two parts, expressed as 𝑥𝑡 = [𝑜𝑡, 𝑧𝑡]. 𝑜𝑡 denotes observed inputs
that are unknown in advance and can only be measured when time step
𝑡 arrives (e.g. sales or inventory level on day 𝑡). The 𝑧𝑡 values can be
predetermined (e.g. knowing the day of the week, holidays, or replen-
ishment days). This study uses the observed inputs and targets until day
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Fig. 5. The model architecture of TFT.
𝑡 (i.e. 𝑦𝑡−𝑘∶𝑡 = {𝑦𝑡−𝑘,… , 𝑦𝑡}, 𝑜𝑡−𝑘∶𝑡 = {𝑜𝑡−𝑘,… , 𝑜𝑡}) and known inputs
across the entire range 𝑧𝑡−𝑘∶𝑡+𝜏 (i.e. 𝑧𝑡−𝑘∶𝑡+𝜏 = {𝑧𝑡−𝑘,… , 𝑧𝑡,… , 𝑧𝑡+𝜏}),
where 𝑘 is a finite look-back window, 𝜏 is the prediction point, 𝜏 ∈
(1,… , 𝜏max). Lastly, each quantile prediction is expressed as follows:

𝑦̂𝑖(𝑞, 𝑡, 𝜏) = 𝑓𝑞
(

𝜏, 𝑦𝑡−𝑘∶𝑡, 𝑜𝑡−𝑘∶𝑡, 𝑧𝑡−𝑘∶𝑡+𝜏 , 𝑆
)

(2)

In TFT-MPIR model, we integrate the Long Short-Term Memory
(LSTM) network for VLT forecasting, a feedback neural network opti-
mally designed for processing time series data (Graves & Graves, 2012).
LSTM has demonstrated its efficacy in various domains, including
finance and tourism (Cao, Li, & Li, 2019; Chimmula & Zhang, 2020;
He, Ji, Wu, & Tso, 2021; Livieris, Pintelas, & Pintelas, 2020). The final
module for replenishment decision-making is constructed as a fully
connected layer. ReLU is employed as the activation function within
our model, functioning as a segmented linear function that outputs
positive inputs as they are, while nullifying negative ones. To combat
overfitting, a common challenge in deep learning, we incorporate a
Dropout layer which randomly disables a selection of neurons and their
connections during the training process, effectively preventing overfit-
ting and enhancing the integration efficiency across diverse network
architectures (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdi-
nov, 2014). The training phase is governed by an objective function,
defined as:

min
𝜃

𝑁
∑

𝑖=1
{𝜆1𝐿̂1(𝑂𝑢𝑡1𝑖, 𝑑𝑡) + 𝜆2𝐿̂2(𝑂𝑢𝑡2𝑖, 𝑙𝑡) + 𝜆3𝐿̂3(𝑂𝑢𝑡3𝑖, 𝑞∗𝑡 )} (3)

In this function, 𝜃 represents the collection of neural network parame-
ters slated for optimization, and 𝑁 denotes the total count of training
data. The terms 𝜆1 and 𝜆2 are smaller numerical values penalizing
inaccuracies in demand and VLT predictions, instrumental in regulating
the gradient descent’s iteration step size for streamlined model training.
The first two components of the function calculate the loss between the
predictions of demand and VLT and their actual values. The third com-
ponent assesses the loss between the predicted replenishment quantities
and the optimal quantities identified earlier. This design, anchored in
the principle that replenishment decisions heavily depend on accurate
demand and VLT information, is crucial for effective decision-making.
7 
Notably, when deploying the trained model on the test dataset, the
output requires further adjustment, rounding it off to non-negative
integers.

To sum up, the designed TFT-MPIR model can simultaneously pre-
dict demand, VLT, and replenishment quantities in each iteration.
Additionally, the intermediate variables, demand and VLT, can be used
to monitor model performance. By observing anomalies in demand
and VLT outputs during real-time operation of the TFT-MPIR model,
decision-makers can identify abnormal replenishment outputs and ana-
lyze their underlying reasons. Moreover, the model can continuously
identify and adapt to long-term market trends based on historical
data, providing ongoing inventory management support to retailers and
helping them make more accurate inventory decisions.

4. TFT-MPIR evaluation

To appraise the efficacy of TFT-MPIR model and compare it with
benchmark strategies, we created a series of simulated datasets and
incorporated historical sales data from an actual beverage supplier,
which effectively mirrors real-life replenishment situations. The ReLU
function was employed as the activation function, with a Dropout rate
set at 0.2. The learning rate during training was maintained at 0.01. For
the loss function’s objective, the weighting parameters were established
as 𝜆1 = 𝜆2 = 0.1. We utilized PyTorch for neural network backpropaga-
tion, implementing an early stopping policy with a patience threshold
of 20. The computational environment comprised a Linux operating
system, powered by an Intel(R) Xeon(R) Gold 6330 CPU @ 2.00 GHz,
with 256 GB RAM and an NVIDIA A40 GPU.

4.1. Data

For assessing the TFT-MPIR model, we engaged both artificially
simulated and real-world datasets. The simulated dataset was crafted
with a framework comprising a single factory and a single distribution
warehouse, covering a spectrum of 1000 distinct SKUs, equating to
1000 different DC_SKUs combinations. This setup was informed by
the ‘‘80/20 rule’’ of logistics research, which typically observes that
approximately 20% of a company’s products generate 80% of its sales
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Fig. 6. Inventory change chart of a certain DC_SKU: (a) inventory level, (b) stockout quantity, (c) order quantity.
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evenue (Coelho & Mendes, 2019). Accordingly, the average sales
olumes in our simulated dataset of 1000 combinations adhered to a
areto distribution. Each DC_SKU combination began recording sales
nd VLT from January 1, 2018, accumulating 900 records, where the
ales data adhered to a normal distribution, and VLT values ranged
rom 1 to 10, following a gamma distribution.

The real dataset was derived from a leading beverage supplier,
nd included detailed information on the supply warehouse network
nd sales of a specific product category within a certain region. The
ompany operated 2 production factories and 18 DC warehouses in that
rea, distributing 77 different SKUs. The original dataset encompassed
080 DC and SKU combinations, which were narrowed down to 708
fter a preliminary data cleansing process. Included in this dataset
ere historical sales figures, VLT records, initial inventory holdings,
nd various standard constraints like the unit transportation cost and
ox-to-pallet conversion ratios. The descriptive statistics of data is seen
n Supplementary Material Tab. S1–S7.

.2. Experiments

In the study, the experimental setup for both the simulated and
ctual datasets involved allocating the final thirty days as the test
et for each DC_SKU pairing. The rest of the data was divided into
0% for training purposes and 20% for validation. The validation set
layed a crucial role in evaluating the neural network model’s response
o various combinations of hyperparameters, which was instrumental
n choosing the most effective parameters and averting overfitting.
he context for each day encompassed data from the previous 30
ays, denoted as 𝑇 being 30. For instance, the context for May 1st
ntailed historical data ranging from April 1st to April 30th, inclusive
f target vectors. Considering the real dataset, each DC’s transportation
osts varied between the two supplying factories. Assuming no storage
apacity limits at the factories and DCs, the DCs would naturally opt
or the factory offering lower unit transportation costs. In the base
cenario, the unit transportation cost for each DC_SKU combination was
redetermined. It was assumed that the daily unit stockout cost for each
ombination was set at 150% of the unit transportation cost, with the
nit holding cost being 1% of the unit stockout cost.

In experimental design, we utilized three benchmark strategies for
omparison. The first is the (t, R, S) policy, an integrated inventory
trategy that combines the (t, S) and (R, S) policies. (t, R, S) policy
nvolves a fixed review period 𝑡, a maximum inventory level 𝑆, and

predetermined reorder point 𝑅. If inventory falls below the reorder
oint after the specified review period, a replenishment order is issued
p to level 𝑆; otherwise, no order is placed, with the order quantity
eing the difference between the maximum inventory level and the
nventory level at the time of review. The second benchmark employs
TO method, where a deep neural network is trained to precisely fore-
ast future demand and VLT. This yields daily point forecasts for future
emand and VLT, followed by solving a deterministic batch problem

o ascertain the daily replenishment quantity, which can be efficiently t

8 
olved using a commercial solver. The third benchmark involves an
2E model comprised entirely of MLP for predicting replenishment
uantities, In the implementation of E2E-MLP methodology, the neural
etwork architecture employs a MLP exclusively to map the input
eature data onto optimal decision-making outcomes (Liu, Letchford,

Svetunkov, 2022; Oroojlooyjadid et al., 2020; Tian & Zhang, 2023).
To evaluate the performance, we use six metrics: total inventory

ost, holding cost, stockout cost, transportation cost, stockout rate,
nd turnover rate. The total inventory cost is the aggregate of the
olding, stockout, and transportation costs. The stockout rate is defined
s the percentage of days with stockouts in the test set, indicating
he frequency of stockouts. It is calculated as the ratio of days with
tockouts (days where the stockout cost is above zero) to the total
umber of days. The inventory turnover rate is derived by dividing the
verage daily inventory level by the average demand.

.3. Results

In the case of the simulated dataset as shown in Table 3, the pro-
osed TFT-MPIR method outperformed the other four methodologies,
ecuring the minimum total inventory cost. It also recorded the lowest
igures in both stockout cost and stockout rate. We can see that an E2E
eep learning model has two key advantages. Firstly, by comparing
he costs of TFT-MPIR against PTO, and E2E-MLP against PTO, we
an observe that using an E2E framework rather than a two-step PTO
ramework offers benefits. Both TFT-MPIR and PTO use the same deep
earning models to predict demand and VLT, but TFT-MPIR provides
eplenishment decision results directly from the input, whereas PTO
ollows a two-step process. We suspect that prediction errors in demand
nd VLT can accumulate during the optimization phase, misleading
he final replenishment decisions. The main optimization target of
he end-to-end framework is the final replenishment quantity, which
hortens the decision-making process and leads to more optimal results.
omparing the costs of TFT-MPIR with E2E-MLP, we believe that the
se of TFT and LSTM models in our sub-modules gives our model a
reater advantage in accurately predicting demand and VLT, resulting
n more reasonable replenishment decisions and subsequently lower
tockout costs.

Regarding the real dataset, Fig. 6 illustrates the inventory levels
nd ordering dynamics for a specific DC_SKU combination over the
est period. In this scenario, it is assumed that for the thirty days
eading up to the test period, the ordering was in line with the op-
imal replenishment quantity (OPT), and any in-transit orders, which
ere placed but had not arrived yet, were accurately included in the

nventory calculations for these thirty days. In Fig. 6(a), the variations
n inventory levels as per different methods are depicted. Fig. 6(b)
howcases the stockout occurrences on a daily basis for each method.
inally, Fig. 6(c) demonstrates the quantities ordered on replenishment
ays by each method, quantified in terms of pallets.

Furthermore, we computed a cumulative cost change graph for

his case study. As illustrated in Fig. 7, the (t, R, S) method is prone
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Fig. 7. Cumulative cost graph of a DC_SKU — (a) cumulative holding cost, (b) cumulative stockout cost, (c) cumulative transportation cost.
Table 3
Comparison results of different methods on simulated data. (The percentage values signify the positive (+) or negative (−) growth rates, indicating how
the values of the current method compare to those of the OPT benchmark).

Method Total cost Holding cost Stockout cost Transportation cost Stockout ratio Turnover rate

OPT 286 242 10 361 5698 270 183 14.12 3.51
TFT-MPIR +15.7% +25.5% +270.9% +9.9% +20.0% +12.0%
(t, R, S) +40.4% +50.9% +1148.5% +16.6% +188.5% −33.1%
PTO +25.2% −21.6% +1988.6% −14.4% +148.7% −43.9%
E2E-MLP +21.8% +3.4% +1131.5% −0.9% +101.3% +1.9%
Table 4
Comparison results of different methods. (The percentage values signify the positive (+) or negative (−) growth rates, indicating how the values of the
current method compare to those of the OPT benchmark).

Method Total cost Holding cost Stockout cost Transportation cost Stockout ratio Turnover rate

OPT 2 668 932 77 248 3078 2 588 606 3.61 2.89
TFT-MPIR +15.8% +7.1% +28 185.0% −17.4% +354.0% −8.4%
(t, R, S) +34.8% +137.0% +16042.7% +12.7% +248.5% +46.4%
PTO +24.1% −29.9% +44 051.3% −26.7% +729.4% −55.8%
E2E-MLP +22.3% +78.1% +31 847.8% −17.2% +377.6% +44.9%
to ordering up to higher inventory levels, and witnesses the swiftest
escalation in holding costs, culminating in the highest overall holding
costs. Conversely, the PTO method, is characterized by the smallest
order quantities, saws a slower increment in total holding costs, ending
up with the lowest final total holding costs. However, the PTO method
leads to a steep increase in total stockout costs, ultimately the highest
among the methods. Notably, the changes across various aspects in
TFT-MPIR method shows a closer alignment with the OPT method.

Table 4 presents a comprehensive performance assessment for 708
DC_SKU combinations from the actual dataset. According to the table,
TFT-MPIR model reports lower total costs than all three benchmark
strategies. Notably, it outperforms the PTO and E2E-MLP methods in
achieving lower stockout rates and costs, achieving lower holding and
transportation costs compared to (t, R, S) and E2E-MLP models. Besides,
as a basic method, (t, R, S) performs the worst in both simulated and
real data scenarios, resulting in the highest inventory costs.

We evaluate the performance of each strategy under varying ratios
between unit stockout cost and unit transportation cost. As depicted
in Fig. 8(a), TFT-MPIR method consistently achieves the lowest total
inventory costs at ratios of 150%, 200%, and 250%. According to
the detailed cost breakdown shown in Figs. 8(b), 8(c) and 8(d), it is
evident that the escalation in stockout costs is the main driver of the
overall increase in total inventory costs as the ratio increases, while
the transportation costs remain relatively unchanged. Notably, even
though the (t, R, S) strategy incurs the lowest stockout costs across
varying ratios, it is responsible for the highest associated holding and
transportation costs.

4.4. Sensitivity analysis

In this section, we conduct extensive sensitivity analyses, extend-

ing prior experiments to assess TFT-MPIR robustness and adaptability

9 
Table 5
Network hyper-parameters.

Hyperparameter Range

Learning rate {0.0001, 0.001,0.005,0.01}
Dropout rate {0.1,0.2,0.3}
TFT hidden size {32,64,128}
TFT attention head size {2,4,8}
LSTM hidden size {32,64,100,128}
LSTM layer {1,2}
Integration module {50,50},{100,100},{100,100,50}

across a variety of hyperparameter choices and model covariates. Hy-
perparameters are pivotal in machine learning models as they essen-
tially shape the model’s architecture and its overall efficacy. The critical
hyperparameters for the TFT-MPIR model are outlined in Table 5.
During the model’s training phase, a grid search method is utilized
to explore various hyperparameter combinations within a predefined
scope, and the average total inventory cost is computed on the val-
idation set to identify the most optimal hyperparameter values. The
standard setting for the ratio between unit stockout cost and unit
transportation cost is set as 150%.

(1) Analysis of Learning Rate Sensitivity: The learning rate stands
as a key hyperparameter in the training of neural networks (LeCun,
Bengio, & Hinton, 2015). Table 6 delineates the impact of varying
learning rates on the TFT-MPIR model’s performance in the test set. In
our analysis, an increase in the learning rate from 0.0001 to 0.01 cor-
responding with a reduction in both total and stockout costs, signifying
the development of a more proficient model.

(2) Sensitivity Analysis of TFT Hidden Layer Size: The demand
prediction module employs the TFT model, with the size of the TFT
hidden layer being a primary hyperparameter. Table 7 indicates how
different sizes of the TFT hidden layer impact the performance of
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Fig. 8. Performance of each method under different ratios of unit stockout cost to unit transportation cost: (a) Comparison chart of total inventory cost for each method, (b)
holding cost, (c) stockout cost, (d) transportation cost.
Table 6
Sensitivity analysis of TFT-MPIR to learning rate. (The percentage values signify the positive (+) or negative (−) growth rates, indicating how
the values of the current parameter compare to those of the OPT benchmark).

OPT lr = 0.0001 lr = 0.001 lr = 0.005 lr = 0.01

Total cost 3 900 093 +18.1% +11.1% +9.8% +7.7%
Holding cost 103 899 +13.6% −1.5% −4.7% +14.2%
Stockout cost 2469 +62 189.9% +53 125.1% +53 258.1% +44590.8%
Transportation cost 3 793 725 −22.3% −23.2% −24.4% −21.5%
Table 7
Sensitivity analysis of TFT-MPIR to TFT hidden size. (The percentage values signify
the positive (+) or negative (−) growth rates, indicating how the values of the current
arameter compare to those of the OPT benchmark).

OPT 32 64 128

Total cost 3 900 093 +13.5% +13.2% +10.4%
Holding cost 103 899 10.7% +3.6% +3.7%
Stockout cost 2469 +58 062.5% +53 756.1% +49086.1%
Transportation cost 3 793 725 −24.3% −21.6% 21.4%

the TFT-MPIR model in the test dataset. Overall, as the size of the
TFT hidden layer increases from 32 to 128, there is an improvement
in the model’s performance. With a too-small TFT hidden layer size,
the demand prediction module fails to extract sufficient features from
historical sales data, leading to insufficient information transfer to
subsequent neural network layers and suboptimal decision-making.

(3) Evaluating the Impact of TFT Attention Heads: In our study,

we assess how the number of attention heads within the TFT−MPIR

10 
Table 8
Sensitivity analysis of TFT−MPIR to TFT attention head size. (The percentage values
signify the positive (+) or negative (−) growth rates, indicating how the values of the
current parameter compare to those of the OPT benchmark).

OPT 2 4 8

Total cost 3 900 093 +11.1% +10.4% +11.6%
Holding cost 103 899 −0.4% +3.7% +11.7%
Stockout cost 2469 +53 125.1% +49086.1% +51 034.8%
Transportation cost 3 793 725 −23.2% −21.4% −21.7%

model’s TFT affects its efficiency. Table 8 details the influence of dif-
ferent counts of attention heads on the TFT−MPIR model’s performance
in the test set, offering insights into how this key aspect of the model’s
structure impacts its overall functionality.

(4) Assessing the Impact of LSTM Hidden Layer Size: The quantity
of hidden layers within the LSTM, particularly in the VLT prediction
segment, plays a pivotal role. Table 9 elaborates on how variations

in the size of LSTM hidden layers influence the efficiency of the
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Table 9
Sensitivity analysis of TFT−MPIR to LSTM hidden size. (The percentage values signify the positive (+) or negative (−) growth rates, indicating
how the values of the current parameter compare to those of the OPT benchmark).

OPT 32 64 100 128

Total cost 3 900 093 +12.6% +11.1% +12.0% +10.4%
Holding cost 103 899 +14.8% +4.9% −0.8% +3.7%
Stockout cost 2469 +53 859.1% +51 984.4% +60 362.9% +49086.1%
Transportation cost 3 793 725 −22.6% −22.6% −26.9% −21.4%
TFT−MPIR model in the test environment, highlighting the correlation
etween hidden layer dimensions and overall model performance.

. Conclusion and discussion

Inventory costs form an integral part of a company’s expenses.
ffective inventory replenishment strategies are crucial for businesses,
s they not only reduce inventory costs but also optimize capital
tilization, lower risks, and bolster competitiveness and profitability. In
oday’s context of escalating market competition and complex supply
hain dynamics, the significance of inventory management, particu-
arly in terms of replenishment decisions, cannot be overstated. It is
ssential for companies to implement scientifically-backed inventory
eplenishment methods to maintain optimal inventory levels, thereby
ircumventing the risks and costs linked to disproportionate inventory
evels. In our study, we introduced an E2E deep learning framework
or addressing multi-period inventory replenishment challenges that in-
lude transportation costs, eliminating the need for presumptions about
uture demand and VLT distributions. Our training objective focused
n identifying replenishment order quantities that minimize the total
nventory cost, encompassing transportation, holding, and stockout
osts. The efficacy of our model was validated through numerical
mplementations using both simulated and real datasets, establishing
ts superiority compared to benchmark models. The key findings of our
esearch can be summarized as follows: (1) In the simulated dataset
nalysis, our TFT-MPIR model successfully achieved the lowest total
nventory, stockout costs, and stockout rates in the test set. Compared
o the optimal post-hoc solution, the total inventory cost with TFT-
PIR was higher by 15.67%. The traditional (t, R, S) method performed

oorly, showing a 40.36% higher total inventory cost and generating
he most transportation costs. The E2E-MLP method resulted in a
1.78% higher total inventory cost than the optimal solution. The
indings unequivocally demonstrated the exceptional efficacy of TFT-
PIR in the realm of inventory management. (2) Within the realm of

ctual data, in contrast to the total inventory costs ascertained by the
PT, our TFT-MPIR model in the test dataset consistently exhibits the
arrowest margin of difference from OPT, at 15.8%. This performance
s markedly superior to the disparities observed in the (t, R, S) method,
TO method, and E2E-MLP method when compared with OPT, which
egister at 34.8%, 24.1%, and 22.3%, respectively. Furthermore, a
igorous sensitivity analysis conducted on the dataset corroborated the
obustness and versatility of the TFT-MPIR model. A pivotal obser-
ation emerged when altering the ratio between unit stockout and
ransportation costs: the primary driver of total inventory cost esca-
ation was the increment in stockout costs. Notably, the TFT-MPIR
odel demonstrated a relatively gradual increase in stockout costs, thus
reserving its capability to consistently attain the lowest total inventory
osts across all benchmarks. This insight underscores the method’s
uperiority, attributed to its reduction of intermediate steps, thereby
inimizing information loss, averting errors in intermediary processes,

nd ensuring that each component of the model significantly influences
ecision-making, effectively safeguarding against further adverse ef-
ects on decision performance. (3) Our approach, which integrates the
rediction and optimization of crucial decision variables in a modular
ramework, proved to be a multi-faceted model. It not only outputs
ecommended replenishment decisions from historical contextual data
ut also generates demand and VLT forecasts. These features guide
11 
the decision-making process and enable the early detection of training
and prediction issues, enhancing the model’s applicability and stabil-
ity. Facing scenarios with diverse product categories and uncertain
demand and VLT, adopting an end-to-end concept in inventory re-
plenishment strategy represents an innovative and efficient method,
minimizing manual intervention and thereby facilitating more precise
inventory decisions at reduced operational costs. Future research di-
rections outlined in this work include: (1) Expanding the scope of
the E2E model by factoring in additional practical elements, such as
the storage capacity limits of factories and distribution centers, and
integrating varying transportation costs among multiple warehouses
and distribution hubs. This will facilitate the development of a more
comprehensive E2E inventory replenishment framework capable of
determining optimal replenishment sources for different distribution
centers. (2) While the study focused on replenishment on predeter-
mined order days, it acknowledges that certain products may require
more frequent restocking. Future efforts will aim to also determine the
optimal scheduling of subsequent replenishment cycles, leading to the
creation of a more holistic solution.
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